久久久精品中文字幕麻豆发布-成在线人免费视频-牛和人交vide欧美XX00186-久久久久99精品成人片三人毛片

Erdos-Ko-Rado theorem and Kruskal-Katona Theorem

活動信息

  • 開始時間:2024-10-23 16:00:00
  • 活動地點:創客基地樓 114
  • 主講人:王軍

活動簡介

<p>In the late 1960's, Kruskal and Katona solved independently an isoperimetric problem in the high-dimensional simplex. A general Kruskal-Katona-type problem on graphs is to describe subsets of the vertex set of a graph with minimum number of neighborhoods with respect to its their own sizes. We reort a few of Kruskal-Katona-type theorems for graphs, especially for the derangement graph of the symmetric group on a finite set. With this theorem we deduce the size and structure of the first three maximal intersecting families in the symmetric group, where the first was given by Deza-Frankl and Cameron-Ku; the second was conjectured by Cameron-Ku. With this theorem we also determine the maximum product of two cross-intersecting families in the symmetric group under various conditions.</p>

主講人介紹

王軍,上海師范大學數理學院教授, 曾任中國數學會組合與圖論專業委員會副主任(2006-2018)以及上海師范大學數理學院學術委員會主任等職。 主要的研究領域是組合數學,特別是有限集及有限偏序集的組合學,解決了其中一些引人注目的問題和猜想。曾多次參加或主持國家級和省部級自然科學基金項目,曾被選為遼寧省百千萬人才工程百人層次人選并享受政府特殊津貼。